Ядерный топливный цикл термоядерного реактора.

Представим себе, что дешевое и экономически конкурентоспособное устройство для удержания реагирующей смеси разработано. Какие же природные ресурсы потребуются для термоядерной энергетики? Для того, чтобы ответить на этот вопрос нужно понять, как будет работать термоядерный реактор.
Мы начнем с DT-реакторов, как наиболее легко осуществимых, и, затем, рассмотрим альтернативные виды топлива. Принципиальная схема термоядерного реактора, работающего на смеси дейтерия с тритием показана на Рис.3.



Рисунок 3. Схема основных технологических контуров термоядерного реактора, работающего на смеси дейтерия (D) и трития (Т).

Энергия термоядерных реакций, происходящих в плазме, выносится в основном нейтронами, которые поглощаются в бланкете. Выделяемое в бланкете тепло снимается теплоносителем первого контура охлаждения и используется для получения электроэнергии. Реактор требует снабжения дейтерием и литием. Тритий нарабатывается из лития в процессе работы реактора. Энергия термоядерных реакций выделяется в виде энергичных нейтронов (14.1 МэВ) и энергичных ионов гелия - альфа-частиц (3.5 МэВ), поглощается специальным устройством окружающим плазму - бланкетом и снимается теплоносителем первого контура охлаждения.

Первый из двух компонентов участвующих в DT-реакции, дейтерий - это стабильный, широко распространенный изотоп водорода. Например в обычной воде содержится, примерно, 0.015% тяжелой воды D2O. В отличие от дейтерия, тритий не существует в природе. Поэтому, тритий будет нарабатываться в самом реакторе из изотопов лития, Li6 и Li7, которые будут облучаться нейтронами в бланкете. Оба изотопа лития широко распространены в природе в процентном отношении Li6 : Li7 = 7.5% : 92.5% и оба способны производить тритий. В случае использования Li6, в бланкете будет выделяться дополнительная энергия в количестве 4.8 МэВ на каждый произведенный атом трития. На практике в бланкете будет содержаться смесь изотопов лития и бериллий, который будет использоваться для размножения нейтронов в реакции.

Содержание материалов в бланкете будет подобрано таким образом, чтобы оптимизировать выход трития.

Возможны разные схемы использования лития в бланкете. Один из вариантов использует окислы лития. Тритий удаляется из бланкета при его нагреве потоком горячего гелия, а потом извлекается из гелия в цехе по очистке топлива. Инженерные проработки бланкета показывают, что можно получить коэффициент воспроизводства трития на уровне 1.1, что представляется достаточным для снабжения реактора. Прорабатывались и другие схемы, которые используют жидкометаллический литий. В этом случае, литий, помимо наработки трития, может выполнять роль теплоносителя первого контура. На схеме, представленной на Рис.3, литиевый цикл показан условно, в виде отдельного литиевого контура.
Таким образом, термоядерный реактор будет сжигать дейтерий и литий, а в результате реакций будет образовываться зола - инертный газ гелий.

Термоядерный реактор будет потреблять очень небольшое количество лития и дейтерия. Например, реактор с электрической мощностью 1 ГВт будет сжигать около 100 кг дейтерия и 300 кг лития в год. Если предположить, что все термоядерные электростанции будут производить 5 ·1020 Дж в год, т.е. половину будущих потребностей электроэнергии, то общее годовое потребление дейтерия и лития составят, всего, 1500 и 4500 тонн. При таком потреблении, содержащегося в воде дейтерия (0.015%) хватит на то, чтобы снабжать человечество энергией в течение многих миллионов лет.

Для DT-цикла энергетические ресурсы ограничены имеющимися запасами лития. Разведанные рудные запасы лития составляют 8-10 ·106 тонн. Только этих запасов хватит на многие сотни лет. Кроме того, литий, хотя и в меньшем количестве, чем дейтерий, содержится в морской воде со средней концентрацией 1.7 ·10-7 и общим количеством, превышающим примерно в 103 раз разведанные рудные запасы. Оценки показывают, что затраты на производство топлива для термоядерной энергетики дают малый вклад в стоимость производимой энергии.

Если бы удалось освоить DD-реакцию, то термоядерная энергетика имела бы фактически неограниченные энергетические ресурсы. Основные преимущества DD-реакции заключаются в наличии огромных природных ресурсов дейтерия на Земле и отсутствии необходимости воспроизводства трития. Хотя в DD-реакции меньшая доля энергии выносится в виде нейтронов, тем не менее, в DD-реакторе, также как и в DT-реакторе, будет происходить активация первой стенки.

Еще меньше нейтронов производит DHe3 смесь, в которой нейтроны рождаются в результате DD-реакций. Оптимизация состава смеси и ее температуры позволяет уменьшить нейтронный поток на порядок величины по сравнению с DT-реакцией, что существенно снижает требования к стойкости материалов первой стенки. DHe3-реакция имеет относительно высокое сечение, но в то же время требует больших температур смеси. Недостатком этой реакции является практическое отсутствие Не3 на Земле, что делает освоение этой реакции в Земных условиях практически безнадежным делом. В то же время, этого изотопа много на поверхности Луны, и некоторые проекты, пользуясь тем, что потребление не велико, предлагают добывать это топливо на Луне и доставлять его на Землю. Этот цикл можно замкнуть энергетически даже с учетом энергии затрачиваемой на доставку топлива, хотя сомнительно, что эта схема будет осуществлена в ближайшем обозримом будущем.

Таким образом, будущие термоядерные реакторы имеют достаточные запасы топлива для обеспечения потребностей человечества в энергии в течении многих сотен лет, а в случае некоторых реакций и многих десятков тысяч лет. Термоядерная энергетика будет потреблять очень небольшое количество исходных материалов и не потребует развития широкомасштабного производства топлив. Сам топливный цикл будет использовать лишь малую часть производимой энергии и соответственно топливная составляющая в цене электроэнергии будет незначительна. Как исходные составляющие рабочей смеси, так и конечные продукты реакций не являются радиоактивными веществами и не требуют долговременного хранения. Эти обстоятельства выгодно отличают термоядерную энергетику как от обычных ядерных реакторов деления, так и электростанций, сжигающих органические топлива. Основная проблема осуществления управляемого термоядерного синтеза заключается в создании практичного устройства, способного обеспечить выполнения условия Лоусона при достаточно высокой температуре смеси.

Вперед

Назад

 

Страница обновлена: 13.01.2023