Получение синусоидальной ЭДС

2.2. Получение синусоидальной ЭДС. Характеристики синусоидальных величин. Обозначения в цепях переменного тока
    Пусть в однородном магнитном поле, например, между полюсами плоского магнита, под углом Image4867к горизонтальной плоскости расположена плоская катушка, выполненная в виде прямоугольной рамки, по периметру которой намотано w витков (рис. 2.2). Площадь сечения рамки – S, магнитная индукция – В.
Image4868
Рис. 2.2. Получение синусоидальной ЭДС
    Заставим эту катушку вращаться против часовой стрелки с угловой скоростью w. Если обозначить время полного оборота катушки через Т, то Image4869, рад/с. За некоторый промежуток времени t рамка повернется на угол w t. Площадь проекции рамки в этом положении Image4870. Рамка и ее проекция на горизонтальную плоскую поверхность пронизываются одним и тем же числом силовых линий магнитной индукции, поэтому обусловленный ими магнитный поток равен
Image4871.
    При вращении катушки число силовых линий, охватываемых ее витками, все время меняется.
    Например, при горизонтальном положении рамки это число максимально, при вертикальном – равно нулю. Другими словами, меняется магнитный поток, пронизывающий катушку, в результате чего в ней в соответствии с уравнением (2.2) наводится ЭДС:
Image4872.
    Поясним величины, входящие в последнее выражение. Еm – максимальное значение или амплитуда ЭДС. Аргумент синусоидальной функции w t +Image4867 называется фазой. Угол Image4867 , определяющий начальное положение рамки и равный фазе в начальный момент времени (при t = 0), – начальная фаза. Фаза с течением времени (при вращении катушки) постоянно меняется. Скорость изменения фазы омега.bmp называется угловой или циклической частотой. Время одного цикла изменения фазы (время одного оборота рамки) называется периодом и обозначается T. Количество полных изменений синусоидальной ЭДС в секунду определяет частоту f , измеряемую в герцах (Гц). Один герц соответствует одному полному колебанию в секунду. Связь между частотой и периодом выражается формулой f = 1/T. При частоте 50 Гц Image4873314 c-1.
    Графическое изображение синусоидальной функции времени в электротехнике называют волновой диаграммой. При ее построении на горизонтальной оси откладывается время t или пропорциональный ему угол омега.bmpt. При нулевой начальной фазе кривая выходит из начала координат и через каждые четверть периода принимает максимальные значения и переходит через ноль. График такой функции построен по уравнению е = Еm sinомега.bmpt на рис. 2.3, а.
Image4874
Рис. 2.3. Волновые диаграммы
    При ненулевых начальных фазах диаграммы имеют несколько иной вид. Пусть напряжение и ток на некотором участке цепи определяются выражениями:
Image4875                                               (2.3)
    Для определенности положим Image4867 u > 0, а Image4876< 0. Сначала построим волновую диаграмму напряжения. При t = 0 u = UmsinImage4867u. При положительном Image4867u эта величина положительна, и синусоида отсекает на вертикальной оси отрезок выше начала координат (рис. 2.3, б). Начало синусоиды и все ее точки оказываются сдвинутыми влево на величину Image4867u. Кривая тока, имея отрицательную начальную фазу, смещается вправо. Если начальные фазы двух синусоидальных функций, изменяющихся с одинаковой частотой, различны, то говорят, что они не совпадают по фазе. Отрезок на горизонтальной оси, разделяющий начала синусоидальных кривых (угол ф на рис. 2.3, б), определяет угол сдвига фаз. Он равен разности их начальных фаз:
ф = Image4867u – Image4867i.                                                     (2.4)
    В случае напряжения и тока вычисление производится именно в таком порядке: начальная фаза напряжения минус начальная фаза тока.
    Если Image4867u > Image4867i и угол ф положителен, то говорят, что напряжение опережает по фазе ток, или ток отстает по фазе от напряжения. На волновой диаграмме в этом случае кривая напряжения проходит через ноль и максимальные значения раньше тока; изменения тока отстают от соответствующих изменений напряжения. Мера отставания – угол ф.
    Остановимся еще на двух моментах. В цепях синусоидального тока мы будем встречаться как с переменными, так и с постоянными величинами. Для тех и других применяются различные обозначения. Переменные величины – функции времени – будем обозначать маленькими (строчными) буквами u, i, e, а постоянные – большими (прописными) U, I, Е.
    Второй момент касается указания направления тока или напряжения. При постоянном токе его направление связано с движением положительно заряженных частиц. В случае переменного тока его стрелка на схеме показывает у с л о в н о в ы б р а н н о е положительное направление. Если в какой-то момент времени ток направлен по стрелке, он считается положительным, в противном случае он отрицателен.

 

Страница обновлена: 27.09.2016