Теорема об эквивалентном генераторе

11. Теорема об эквивалентном генераторе

Формулировка теоремы: по отношению к выводам выделенной ветви или отдельного элемента остальную часть сложной схемы можно заменить а)эквивалентным генератором напряжения с ЭДС Еэ , равной напряжению холостого хода на выводах выделенной ветви или элемента (Еэ=Uxx) и с внутренним сопротивлением R0, равным входному сопротивлению схемы со стороны выде­ленной ветви или элемента (R0=RВХ); б)эквивалентным генератором тока с JЭ, равным току короткого замыкания на выводах выделенной ветви или элемента (Jэ=Iкз), и с внутренней проводимостью G0, равной входной проводимости схемы со стороны выделенной ветви или элемента  (G0=Gвх).
Для доказательства п. а) теоремы удалим из схемы рис. 26а выделенную ветвь и между точками ее подключения измерим (рассчитаем) напряжение холостого хода  Uxxab = фa-фb  (рис. 26б).

Включим последовательно c выделенной ветвью два направленные встречно источника ЭДС, равные напряжению холостого хода () (рис. 26в). Такое включение дополнительных источников ЭДС не изменит ре­жим сложной схемы, так как их действие взаимно компенсируется.
Определим ток в выделенной ветви по принципу наложения, как алгебраическую сумму из двух частичных токов: а)тока , возникающего от независимого действия ЭДС (рис. 26г); б) тока , возникающего от совместного действия ЭДС и всех источников сложной схемы (рис. 26д).
Частичный ток в схеме рис. 26г по закону Ома равен:
,
где Rвх– входное сопротивление схемы со стороны выделенной ветви.

Частичный ток в схеме рис. 26д равен нулю  I¢¢0, так как  E2=Uxx обеспечивает условия режима холостого хода ветви.
Результирующий ток в выделенной ветви равен:
                    .
Полученному уравнению соответствует эквивалентная схемы замещения рис. 27а, где остальная часть схемы заменена эквивалентным генератором на­пяжения с параметрами  Eэ=Uxxаb, , что и требовалось доказать. (Еэ=Uxx)

 

Генератор напряжения (EЭ, R0) может быть заменен эквивалентным гене­ратором тока (JЭ, G0) (рис. 27б) исходя из условия эквивалентности:.
Параметры эквивалентного генератора тока могут быть определены (рассчитаны или измерены) независимым путем, как Jэ=Iкзаb , G0=Gвхаb, где Iкзаb - ток короткого замыкания в выделенной ветви.
Метод расчета тока в выделенной ветви сложной схемы, основанный на применении теоремы об эквивалентном генераторе, получил название метода эквивалентного генератора напряжения (тока) или метода холостого хода и короткого замыкания (х.х. и к.з.). Последовательность (алгоритм) расчета выглядит так.
1) Удаляют из сложной схемы выделенную ветвь, выполняют расчет ос­тавшейся части сложной схемы любым методом и определяют напряжение холостого хода  между точками подключения выделенной ветви.
2)Удаляют из сложной схемы выделенную ветвь, закорачивают в схеме точки подключения выделенной ветви, выполняют расчет оставшейся части сложной схемы любым методом и определяют ток короткого замыкания Iкзаb в закороченном участке между точками подключения выделенной ветви.
3)Удаляют из схемы выделенную ветвь, в оставшейся части схемы удаляют все источники (источники ЭДС E закорачивают, а ветви с источниками тока J удаляют из схемы), методом преобразования выполняют свертку пассив­ной схемы относительно точек подключения выделенной ветви и таким обра­зом определяют Rвхаb.
4) Составляют одну из эквивалентных схем замещения с генератором напряжения (рис. 27а) или с генератором тока (рис. 27б).
5) Выполняют расчет эквивалентной схемы (рис. 27а или рис. 27б) и на­ходят искомый ток, например:
- по закону Ома для схемы рис. 27а;
- по методу двух узлов для схемы рис. 27б.
Так как между тремя параметрами эквивалентного генератора справед­ливо соотношение , то для их определения достаточно рассчитать любые два из трех параметров согласно п.п. 1), 2), 3), а третий параметр опре­делить из приведенного соотношения.

Пример. В схеме рис. 28 с заданными параметрами элементов (E1=100 В; E2=20 В; E3=30 В, E4=10 В;  R1=R2=40 Ом; R3=R4=20 Ом; R5=R6=10 Ом) оп­ределить ток  в выделенной ветви I6  методом эквивалентного генератора.

Решение задачи выполняется поэтапно.
1) Определение Uxx=Eэ в схеме рис. 29.

A;         A;
  следовательно
 B

 

2) Определение   Rвх=R0 в схеме рис. 30.

 

 Ом

 

3) Расчет эквивалентной схемы рис. 31 и определение искомого тока I6.

A

 

Страница обновлена: 20.12.2022