Метод контурных токов

4. Метод контурных токов

Теоретическая база метода контурных токов – 2-ой закон Кирхгофа в со­четании с принципом наложения. Предполагают, что в каждом элементарном контуреячейке схемы протекает «свой» контурный ток Ik, а действительные токи ветвей получаются по принципу наложения контурных токов как их алгебраические суммы. В качестве неизвестных величин, подлежащих определению, в данном методе выступают контурные токи. Общее число неизвестных составляет m-(n-1).
Пусть требуется выполнить расчет режима в заданной сложной схеме рис. 17. Параметры отдельных элементов схемы заданы.
Последовательность (алгоритм) расчета.
1) Задаются (произвольно) положительными направлениями контурных токов в контурах-ячейках схемы(1, 2, 3 ). Контуры-ячейки следует выбирать так, чтобы они не включали в себя ветви с источниками тока. Ветви с источниками тока J образуют свои кон­туры с заданными токами (J1, J2).
2) Составляются m-(n-1) уравнений по 2-му закону Кирхгофа для выбранных контуров-ячеек с контурными токами 1, 2, 3. В уравнениях учитываются падения напряжений как от собственного контурного тока, так и от смежных контурных токов.

Ниже приведена система контурных уравнений для схемы рис. 17:


В обобщенной форме система контурных уравнений имеет вид:


Здесь введены следующие обозначения:
R11= R1 +R4; R22 = R3 +R4 +R5  и т. д. – собственные сопротивления контуров, равные сумме сопротивлений всех элементов контура;
R12 = R21 = -R4 ; R23 = R32 = -R5  и т. д. – взаимные сопротивления между двумя смежными контурами, они положительны – если контурные токи в ветви совпадают, и отрицательны – если контурные токи в ветви направлены встречно, и всегда отрицательны – если все контур­ные токи ориентированы одинаково (например, по часовой стрелке), равны нулю – если контуры не имеют общей ветви, например, R13 = R31 = 0 ;
 E11 = E1 + J1R4, E22 = -E2, E33 = - E3 +J2R3  и т. д. – контурные ЭДС, равные алгебраиче­ской сумме слагаемых Enn = SE + SJR от всех источников контура.
Система контурных уравнений в матричной форме:
    или в сокращенно ,
где  - матрица контурных сопротивлений,  - матрица контурных токов,  - матрица контурных ЭДС.
3) Система контурных уравнений решается на ЭВМ по стандартной программе для решения систем линейных алгебраических уравнений с вещественными коэффициентами (SU1), в результате чего определяются неизвестные контурные токи 1, 2, 3.
4) Выбираются положительные направления токов в ветвях исходной схемы (рис. 1) (I1, I2, I3, I4, I5). Токи ветвей определяются по принципу наложения как алгебраические суммы контурных токов, протекающих в данной ветви.
I1 = Iк1;  I2 = -Iк3;  I3 = -Iк2 – J2;  I4 = Iк1 – Ik2+ J1;  I5 = Iк2 - Ik3 .
5) При необходимости определяются напряжения на отдельных элементах (Uk = IkRk), мощности источников энергии (PEk = EkIk, PJk = Uk Jk) и мощности приемников энергии (Pk = Ik2 ×Rk).

 

Страница обновлена: 27.09.2016