Усилительный каскад с общим эмиттером

Простейший усилительный каскад по схеме с общим эмиттером приведен на рис. 12.6а. При схемном изображении транзистора и источников этот каскад принимает вид рис. 14.1а. Для анализа принципа работы каскада  построим его передаточную характеристику  (рис.14.1б).
    С увеличением входного сигнала (Uбэ) растет ток базы Iб (см.рис. 12.6в), а значит и ток коллектора, причем
,
     Ток коллектора создает падение напряжения на резисторе , причем ,а также на дифференциальном сопротивлении участка коллектор-эмиттер транзистора - , причем всегда .
     Рост тока коллектора означает уменьшение Rкэ, а значит и Uкэ. При этом на постоянном сопротивлении резистора падение напряжения увеличивается. Так как дифференциальное сопротивление Rкэ вычислять сложно, падение напряжения  на участке коллектор-эмиттер транзистора находят как разность
.

      И так, с увеличением тока коллектора  Iк увеличивается падение напряжения на резисторе Rк и уменьшается напряжение Uкэ , т.е. выходное напряжение каскада (рис.14.1б).

     Когда ток коллектора достигает насыщения   (т.е. максимального значения), напряжение на участке коллектор-эмиттер транзистора достигает наименьшего значения. Это значение называют напряжением насыщения - Uкэн, причем
.
Как правило, это напряжение составляет десятые доли вольта, оно пренебрежимо мало в сравнении с Ек, поэтому иногда им пренебрегают, полагая . Дальнейшее увеличение Uбэ не может вызвать изменений тока Iк и напряжения  Uкэ.
     Анализ передаточной характеристики позволяет выделить три характерных участка (они обозначены римскими цифрами). На участке I через транзистор протекает только неуправляемый обратный ток коллекторного перехода. Сопротивление . Практически все напряжение источника Ек падает на сопротивление Rкэ, т.е. .
      На участке II напряжение на коллекторе транзистора можно изменять в пределах , а ток - в пределах  . Эти изменения являются результатом регулировки параметров Uбэ, Iб маломощного источника сигнала.
      Например , а . Отношение  обозначают КU и называют коэффициентом усиления по напряжению. В нашем примере КU=50. Кроме того, увеличение напряжения Uбэ приводит к пропорциональному уменьшению напряжения Uкэ, т.е. знаки приращений входного и выходного сигналов противоположны. Такие усилители называют инвертирующими.
      На участке III . Транзистор теряет свойства усилительного элемента.
     Передаточная характеристика позволяет рассмотреть различные режимы работы усилительного каскада (классы усиления). При работе в классе «В» напряжение  (см. рис.14.1б). На выход передается сигнал только одной полярности. При подаче на вход двухполярного сигнала часть информации будет потеряна.
     При работе в классе «А» напряжение . Здесь Uсм - напряжение смещения, постоянная величина, не зависящая от Uвх. Когда Uвх= 0, Uбэ = Uсм. Такой режим называют режимом покоя, а токи Iб, Iк и напряжения Uбэ и Uкэ называют токами и напряжениями покоя и обозначают Iбп; Iкп; Uбэп; Uкэп. Напряжение смещения Uсм выбирают так, чтобы рабочая точка транзистора Т находилась в середине линейного участка II. В этом случае любое приращение входного напряжения  вызовет пропорциональное инверсное приращение выходного напряжения , где КU - коэффициент усиления.
     При работе в классе D на вход каскада  подается большой сигнал (пунктир на рис. 14.1). Передаваемый сигнал ограничивается сверху и снизу. Такой режим широко применяется в импульсной технике.
     Чтобы обеспечить усиление каскада в классе А, на базу транзистора необходимо подать напряжение смещения Uсм. Это обеспечивают специальные схемы, которые называют схемами смещения. Рассмотрим наиболее часто применяемые схемы.
     Схема смещения с фиксацией тока базы (рис. 14.2а). Фиксация тока базы Iб достигается, когда в цепь базы включается резистор Rб с большим сопротивлением.
     Для цепи базы справедливо равенство
.
     Отсюда
.                                       (14.1)
     В (14.1)   и им можно пренебречь.
      Из (14.1) следует, что ток покоя базы определяется величиной внешнего сопротивления Rб , не зависит от параметров транзистора  и является фиксированной величиной.
      Схема с фиксацией напряжения базы (рис.14.2б). Для цепи базы в этой схеме справедливо равенство
.
     Отсюда
,                                 (14.2)
 где  - ток делителя.

     Чтобы напряжение смещения Uбэ не зависело от параметров входной цепи транзистора, ток делителя Iд необходимо выбирать значительно больше тока базы Iб. Обычно  . Тогда
                                             (14.3)
и не зависит от тока базы. Большое значение тока делителя  приводит к необходимости дополнительных затрат энергии источника питания. Это недостаток схемы.
     Общим недостатком рассмотренных схем является зависимость режима работы транзистора от температуры окружающей среды (температурные изменения токов базы и коллектора, коэффициента передачи тока базы β). Для устранения температурной зависимости в цепь смещения можно включить элементы коррекции, сопротивление которых зависит от температуры, например терморезистор или диод. Значительно чаще применяют схемы стабилизации с отрицательной обратной связью (ООС).

 

Страница обновлена: 27.09.2016